

Probabilistic Methods in Combinatorics

Instructor: Oliver Janzer

Solutions to Assignment 7

Problem 1. Show that $p_0 = n^{-1}$ is a weak threshold for the property that $G(n, p)$ contains K_3 (i.e. a triangle) as a subgraph.

Solution. We follow the same method as for K_4 in the course. Let X be the number of K_3 's in $G(n, p)$, and for a given 3-element set S of vertices, let X_S be the indicator random variable of the event that S spans a clique; namely, $X_S = 1$ if S spans a clique, and $X_S = 0$ otherwise. Then $X = \sum_S X_S$, where the sum ranges through all 3-element subsets of the vertex set. Clearly, we have $\mathbb{E}(X_S) = p^3$, and so $\mathbb{E}(X) = \binom{n}{3}p^3$. Note that $G(n, p)$ contains a K_3 if and only if $X \geq 1$.

We verify that Items 1 and 2 in the definition of a (weak) threshold are satisfied. First, we show that Item 1 holds, so let $p < \frac{p_0}{C}$ with some constant C . By Markov's inequality, we have

$$f(p) = \mathbb{P}(X \geq 1) \leq \mathbb{E}(X) = \binom{n}{3}p^3 < n^3p^3 < n^3(p_0/C)^3 = C^{-3}.$$

Therefore, by choosing C sufficiently large, we have $f(p) < \varepsilon$, satisfying Item 1.

Now let $p > Cp_0 = Cn^{-2/3}$. We can write $f(p) = 1 - \mathbb{P}(X = 0)$. Now by Chebyshev, we bound the probability $\mathbb{P}(X = 0)$ as follows:

$$\mathbb{P}(X = 0) \leq \frac{\text{Var}(X)}{(\mathbb{E}(X))^2}.$$

Now our task is to calculate $\text{Var}(X)$. We have

$$\text{Var}(X) = \sum_{S,T} \text{Cov}(X_S, X_T). \tag{1}$$

(Here, the sum is over all ordered pairs (S, T) , including $S = T$.)

Now let us compute $\text{Cov}(X_S, X_T)$. Note that

$$\text{Cov}(X_S, X_T) = \mathbb{E}[X_S X_T] - \mathbb{E}[X_S] \mathbb{E}[X_T] = \mathbb{P}(A_S \cap A_T) - \mathbb{P}(A_S) \mathbb{P}(A_T),$$

where A_S is the event that S spans a clique. Since $\mathbb{P}(A_S) = p^3$ for every set S of size 3, we have $\mathbb{P}(A_S) \mathbb{P}(A_T) = p^6$ for all S, T . However, the term $\mathbb{P}(A_S \cap A_T)$ depends on the size

of $S \cap T$. Indeed, $\mathbb{P}(A_S \cap A_T) = p^{g(S,T)}$, where $g(S, T)$ is the number of pairs of vertices contained entirely in S or entirely in T (since we need all these pairs to be edges in our random graph for the event $A_S \cap A_T$ to hold). Note that

$$g(S, T) = \begin{cases} 3 & \text{if } S = T \\ 5 & \text{if } |S \cap T| = 2 \\ 6 & \text{otherwise} \end{cases}$$

and therefore

$$\text{Cov}(X_S, X_T) = \begin{cases} p^3 - p^6 & \text{if } S = T \\ p^5 - p^6 & \text{if } |S \cap T| = 2 \\ 0 & \text{otherwise.} \end{cases}$$

Also, for $k \in \{0, 1, 2, 3\}$, the number of pairs (S, T) such that $|S \cap T| = k$ is less than n^{6-k} as $S \cup T$ occupies $6 - k$ vertices. Therefore, the contribution of pairs (S, T) with $S = T$ is at most $n^3 p^3$, the contribution of pairs (S, T) with $|S \cap T| = 2$ is at most $n^4 p^5$, and the contribution of the other pairs is 0. Hence,

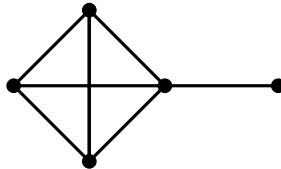
$$\text{Var}(X) < n^3 p^3 + n^4 p^5.$$

Also, $\mathbb{E}(X) = \binom{n}{3} p^3 = \Omega(n^3 p^3)$. So we get

$$\begin{aligned} P(X = 0) &\leq \frac{\text{Var}(X)}{(\mathbb{E}(X))^2} < \frac{n^3 p^3 + n^4 p^5}{\Omega(n^6 p^6)} = O(n^{-3} p^{-3} + n^{-2} p^{-1}) \\ &= O(C^{-3} + C^{-1} n^{-1}), \end{aligned}$$

where for the last inequality we used that $p > Cn^{-1}$. Therefore, if C is sufficiently large, then $P(X = 0) \leq \varepsilon$, so Item 2 is also satisfied. In conclusion, p_0 is truly a threshold.

Problem 2. What is a threshold probability function $p = p(n)$ for the occurrence of the graph below as a subgraph of the random graph $G(n, p)$?



Solution. Let X be the number of copies of the graph H (depicted above). We first

calculate the expectation of X .

$$\mathbb{E}[X] = n(n-1) \binom{n}{3} p^7 = \Theta(n^5 p^7).$$

Seeing this, one might be tempted to guess that $p_0 = n^{-5/7}$ is a threshold function for the appearance of H . However, let Y denote the number of copies of K_4 . Then $\mathbb{E}[Y] = \binom{n}{4} p^6$. It follows that the probability that $G(n, p)$ contains a K_4 is $o(1)$ if $p = o(n^{-2/3})$. As K_4 is a subgraph of H , this implies that the probability that $G(n, p)$ contains a copy of H is $o(1)$ whenever $p = o(n^{-2/3})$, contrary to the guess that if $p = \omega(p_0)$ then $G(n, p)$ contains a copy of H w.h.p. (= with high probability, i.e. with probability $1 - o(1)$). We shall see that $n^{-2/3}$ is a threshold function for the property of containing a copy of H .

Let us calculate the variance of X . For that, list all copies of H in K_n as H_1, \dots, H_l , and let X_i be the indicator function of the event that H_i is in G . Then $X = \sum_{i \in [l]} X_i$.

$$\begin{aligned} \text{Var}[X] &= \sum_{i,j \in [l]} \text{Cov}(X_i, X_j) = \sum_{i,j \in [l]} (\mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j]) \\ &= \sum_{i,j \in [l]} (\mathbb{P}[H_i \cup H_j \subseteq G] - \mathbb{P}[H_i \subseteq G] \cdot \mathbb{P}[H_j \subseteq G]) \\ &= \sum_{i,j \in [l]} (p^{14 - |E(H_i) \cap E(H_j)|} - p^{14}) \\ &= p^{14} \cdot \sum_{k=0}^7 \sum_{i,j \in [l]: |E(H_i) \cap E(H_j)|=k} (p^{-k} - 1) \\ &\leq p^{14} \cdot \sum_{k=1}^7 \sum_{i,j \in [l]: |E(H_i) \cap E(H_j)|=k} p^{-k} \\ &= p^{14} \cdot \sum_{k=1}^7 p^{-k} \cdot \#\{(i, j) : |E(H_i) \cap E(H_j)| = k\}, \end{aligned}$$

where the inequality follows as the pairs (i, j) for which $k = 0$ contribute 0 to the sum, and for the rest we use the inequality $p^{-k} - 1 \leq p^{-k}$. Now, we wish to bound $\#\{(i, j) : |E(H_i) \cap E(H_j)| = k\}$. Firstly, we note the following upper bounds on the number of vertices that are in either H_i or H_j , provided $|E(H_i) \cap E(H_j)| = k$.

$$|V(H_i) \cup V(H_j)| \leq \begin{cases} 8 & k = 1 \\ 7 & k \in \{2, 3\} \\ 6 & k \in \{4, 5, 6\} \\ 5 & k = 7 \end{cases}$$

It follows that

$$\#\{(i, j) : |E(H_i) \cap E(H_j)| = k\} \leq \begin{cases} n^8 & k = 1 \\ n^7 & k \in \{2, 3\} \\ n^6 & k \in \{4, 5, 6\} \\ n^5 & k = 7 \end{cases}$$

We obtain the following upper bound on $\text{Var}[X]$.

$$\text{Var}[X] \leq p^{14} (n^8 p^{-1} + 2n^7 p^{-3} + 3n^6 p^{-6} + n^5 p^{-7})$$

Let $p = w(n^{-2/3})$. Now

$$\begin{aligned} \mathbb{P}[X = 0] &\leq \frac{\text{Var}[X]}{\mathbb{E}[X]^2} \leq O\left(\frac{p^{14} (n^8 p^{-1} + 2n^7 p^{-3} + 3n^6 p^{-6} + n^5 p^{-7})}{n^{10} p^{14}}\right) \\ &\leq o(n^{-2} n^{2/3} + 2n^{-3} n^2 + 3n^{-4} n^4 + n^{-5} n^{14/3}) = o(1). \end{aligned}$$

(Note that the largest term corresponds to H_i and H_j intersecting in a K_4 , which hints to the fact that K_4 's are important.) So we have shown that if $p = o(n^{-2/3})$ then w.h.p. $G(n, p)$ does not contain a copy of H , and if $p = w(n^{-2/3})$ then w.h.p. $G(n, p)$ does contain a copy of H . This shows that $n^{-2/3}$ is a threshold function for the property of containing a copy of H .

Remark. We could have taken a simpler approach as follows. Instead of showing directly that a copy of H exists w.h.p. when $p = \omega(n^{-2/3})$, we could have shown that $G(n, p)$ contains a copy of K_4 w.h.p. (this would involve the calculation of expectation and variance of the number of copies of K_4 and is similar to, but probably easier than, the above), and moreover we could have shown that w.h.p. every vertex has degree at least 4 (this can be done by upper-bounding the probability that a vertex has too small degree and using a union bound). Finally, we notice that if a graph contains a K_4 and every vertex has degree at least 4, then the graph contains a copy of H .

Problem 3. For $n \geq 2$ and $p \in (0, 1)$ consider the random 5-partite graph $G(n, p, 5)$ defined as follows. The vertex set of $G(n, p, 5)$ is a union of five disjoint independent sets V_1, \dots, V_5 , each of size n . Moreover, for $1 \leq i < j \leq 5$, each $(v_i, v_j) \in V_i \times V_j$ is an edge in $G(n, p, 5)$ independently with probability p . Find a threshold probability function $p = p(n)$ for the occurrence of K_5 as a subgraph of $G(n, p, 5)$.

Solution. A valid threshold probability is $p = n^{-1/2}$.

(a) Let X be the random variable counting the number of copies of K_5 in $G(n, p, 5)$. Note

that $\mathbb{E}[X] = n^5 p^{\binom{5}{2}}$ since there are n^5 potential copies of K_5 and each of them occurs with probability $p^{\binom{5}{2}}$. Therefore, if $p = o(n^{-1/2})$ then

$$\mathbb{E}[X] = n^5 p^{\binom{5}{2}} = o\left(n^5 n^{-\frac{1}{2} \cdot \binom{5}{2}}\right) = o(n^5 n^{-5}) = o(1)$$

and so, by Markov's inequality

$$\mathbb{P}[G(n, p, 5) \text{ contains a copy of } K_r] = \mathbb{P}[X \geq 1] \leq \mathbb{E}[X] = o(1).$$

(b) By the second moment method we know that:

$$\mathbb{P}(G(n, p, 5) \text{ contains a copy of } K_5) = \mathbb{P}(X \geq 1) = 1 - \mathbb{P}[X = 0] \geq 1 - \frac{\text{Var}[X]}{\mathbb{E}[X]^2}.$$

Therefore, it suffices to show that $\frac{\text{Var}[X]}{\mathbb{E}[X]^2} = o(1)$. Let

$$\mathcal{S} = \{S \subseteq \cup_{i \in [5]} V_i : |S \cap V_i| = 1 \text{ for each } i \in [5]\}.$$

For each $S \in \mathcal{S}$ let X_S be the indicator random variable for the event A_S that S spans a K_5 in $G(n, p, 5)$. Clearly $X = \sum_{S \in \mathcal{S}} X_S$. Therefore:

$$\text{Var}[X] = \sum_{S, T \in \mathcal{S}} \text{Cov}(X_S, X_T).$$

If $|S \cap T| \leq 1$ then the events A_S and A_T are independent (because no edges are shared) in which case $\text{Cov}(X_S, X_T) = 0$. Hence:

$$\text{Var}[X] \leq \sum_{\substack{S, T \in \mathcal{S} \\ 2 \leq |S \cap T| \leq 5}} \text{Cov}(X_S, X_T) \leq \sum_{\substack{S, T \in \mathcal{S} \\ 2 \leq |S \cap T| \leq 5}} \mathbb{E}[X_S X_T].$$

Note that if $|S \cap T| = i$ then $\mathbb{E}[X_S X_T] = p^{2\binom{5}{2} - \binom{i}{2}} = p^{20 - \binom{i}{2}}$. Therefore:

$$\sum_{\substack{S, T \in \mathcal{S} \\ 2 \leq |S \cap T| \leq 5}} \mathbb{E}[X_S X_T] \leq \sum_{i=2}^5 \binom{5}{i} n^5 (n-1)^{5-i} p^{20 - \binom{i}{2}} \leq (n^5 p^{10})^2 \sum_{i=2}^5 \binom{5}{i} n^{-i} p^{-\binom{i}{2}}$$

since there are n^5 ways to choose $S \in \mathcal{S}$, $\binom{5}{i}$ ways to choose i parts on which S and T coincide and given these there are $(n-1)^{5-i}$ ways to choose the vertices in $T \setminus S$. So

$$\text{Var}[X] \leq (n^5 p^{10})^2 \cdot O(n^{-2} p^{-1} + n^{-3} p^{-3} + n^{-4} p^{-6} + n^{-5} p^{-10}).$$

Since $\mathbb{E}[X] = n^5 p^{10}$, we have

$$\mathbb{P}(X = 0) \leq \frac{\text{Var}(X)}{\mathbb{E}[X]^2} \leq O(n^{-2}p^{-1} + n^{-3}p^{-3} + n^{-4}p^{-6} + n^{-5}p^{-10}),$$

which is $o(1)$ for $p = \omega(n^{-1/2})$.

Problem 4. Show there is a positive constant c such that the following holds. For any n reals a_1, \dots, a_n satisfying $\sum_{i=1}^n a_i^2 = 1$, if $(\varepsilon_1, \dots, \varepsilon_n)$ is a $\{-1, 1\}$ -random vector obtained by choosing each ε_i randomly and independently with equal probability to be either -1 or 1 , then

$$\Pr \left[\left| \sum_{i=1}^n \varepsilon_i a_i \right| \leq 1 \right] \geq c.$$

Solution. Without loss of generality, assume that $|a_1| \geq |a_2| \geq \dots \geq |a_n|$. Let $X = \sum_{i=1}^n \varepsilon_i a_i$. We will make use of the following fact for random variables defined similarly as X . To illustrate, we work with X . For any value $x \neq 0$, we have

$$\Pr[X < 0 \mid |X| = x] = \Pr[X > 0 \mid |X| = x] = 1/2.$$

Indeed, consider a sequence $(\varepsilon_1, \dots, \varepsilon_n)$ such that $|X| = x$ and $X < 0$. Then, for the negated sequence $(-\varepsilon_1, \dots, -\varepsilon_n)$ we have $|X| = x$ and $X > 0$. Hence, we obtain a bijection between sequences of ε 's for which $|X| = x$ and $X < 0$ and those for which $|X| = x$ and $X > 0$, implying the claim.

By the law of total probability, we then have

$$\Pr[X < 0 \mid |X| \leq 1] \leq 1/2.$$

The reason we do not necessarily have equality is that because it could be that $|X| = 0$.

Now, we proceed to the solution of the problem. We consider two cases:

- $|a_1| \geq \frac{1}{10}$.

Let $Z = \sum_{i=2}^n \varepsilon_i a_i$. Since the random variables $(\varepsilon_i a_i)$, $i \in [n]$ are independent, we have $\text{Var}(Z) = \sum_{i=2}^n \text{Var}(\varepsilon_i a_i) = \sum_{i=2}^n a_i^2 = 1 - a_1^2 \leq 99/100$. As $\mathbb{E}[Z] = 0$, by Chebyshev's inequality $\Pr[|Z| \leq 1] \geq 1 - \text{Var}Z \geq 1/100$. As ε_1 and Z are independent, by the above discussion, we have

$$\Pr[\varepsilon_1 \cdot Z \leq 0 \mid |Z| \leq 1] \geq 1/2.$$

Note that if $|Z| \leq 1$ and $\varepsilon_1 \cdot Z \leq 0$, then $|X| \leq \max\{|Z| - |a_1|, |a_1|\} \leq 1$. We conclude

that

$$\Pr[|X| \leq 1] \geq \Pr[|Z| \leq 1] \cdot \Pr[\varepsilon_1 \cdot Z \leq 0 \mid |Z| \leq 1] \geq 1/200.$$

- $|a_1| < \frac{1}{10}$.

Let k be such that $\sum_{i=1}^k a_i^2 \geq 1/2$ and $\sum_{i=1}^{k-1} a_i^2 < 1/2$. We denote $Y = \sum_{i=1}^k \varepsilon_i a_i$ and $Z = \sum_{i=k+1}^n \varepsilon_i a_i$. Similarly as before, we have $\text{Var}(Y) = \sum_{i=1}^k a_i^2 \leq 1/2 + a_k^2 \leq 1/2 + 1/100$ and $\text{Var}(Z) = \sum_{i=k+1}^n a_i^2 \leq 1/2$. By the argument above, using that Y and Z are independent, we have

$$\Pr[Y \cdot Z \leq 0 \mid |Y|, |Z| \leq 1] \geq 1/2.$$

Therefore, we have

$$\begin{aligned} \Pr[|X| \leq 1] &\geq \Pr[|Y| \leq 1 \wedge |Z| \leq 1 \wedge Y \cdot Z \leq 0] \\ &= \Pr[|Y| \leq 1] \cdot \Pr[|Z| \leq 1] \cdot \Pr[Y \cdot Z \leq 0 \mid |Y|, |Z| \leq 1] \\ &\geq (1 - \text{Var}Y)(1 - \text{Var}Z) \cdot \frac{1}{2} \geq 1/10. \end{aligned}$$

Hence, we may take $c = 1/200$.