Probabilistic Methods in Combinatorics

Instructor: Oliver Janzer
Solutions to Assignment 7

Problem 1. Show that py = n~! is a weak threshold for the property that G(n,p) contains
Kj (i.e. a triangle) as a subgraph.

Solution. We follow the same method as for K, in the course. Let X be the number of
K3’s in G(n,p), and for a given 3-element set S of vertices, let Xg be the indicator random
variable of the event that S spans a clique; namely, Xg = 1 if S spans a clique, and Xg =0
otherwise. Then X = > o Xg, where the sum ranges through all 3-element subsets of the
vertex set. Clearly, we have E(Xg) = p?, and so E(X) = (3)p®. Note that G(n, p) contains
a K3 if and only if X > 1.

We verify that Items 1 and 2 in the definition of a (weak) threshold are satisfied. First, we
show that Item 1 holds, so let p < % with some constant C'. By Markov’s inequality, we

have
n

F(p) = B(X > 1) < E(X) = (3

)p3 <n*p* < nd(py/C)* = C73.
Therefore, by choosing C' sufficiently large, we have f(p) < ¢, satisfying Item 1.

Now let p > Cpy = Cn=%/3. We can write f(p) = 1 — P(X = 0). Now by Chebyshev, we
bound the probability P(X = 0) as follows:

P(X =0) <

Now our task is to calculate Var(X). We have

Var(X) =) Cov(Xg, Xr). (1)

ST

(Here, the sum is over all ordered pairs (5,7, including S =T'.)
Now let us compute Cov(Xg, X7). Note that

COV()(S7 XT) = E[XSXT] - ]E[Xs]E[XT] = HD(AS N AT) - P(As)P(AT)7

where Ag is the event that S spans a clique. Since P(Ag) = p* for every set S of size 3,
we have P(Ag)P(Ar) = p® for all S,T. However, the term P(Ag N Ar) depends on the size

1



of SNT. Indeed, P(As N A7) = p?3T) where ¢(S,T) is the number of pairs of vertices
contained entirely in S or entirely in 7' (since we need all these pairs to be edges in our
random graph for the event Ag N Az to hold). Note that

/

3 ifS=T
g(S,T) =45 if|SNT|=2

6 otherwise
\

and therefore )

p?—p® fS=T
Cov(Xs, X7) =< p° —pb if|SNT| =2

0 otherwise.

\

Also, for k € {0,1,2,3}, the number of pairs (S,T) such that |S NT| = k is less than n5=*
as S UT occupies 6 — k vertices. Therefore, the contribution of pairs (S,7") with S =T
is at most n3p3, the contribution of pairs (S,T) with |S N T| = 2 is at most np®, and the

contribution of the other pairs is 0. Hence,
Var(X) < n’p® + n'p°.

Also, E(X) = (3)p* = Q(n®p*). So we get
Var(X)  n3p3 + nip’

PE=0= &R = amem)

=0 Pp P +n?p")
=0(C*+C'nh,

1

where for the last inequality we used that p > Cn™". Therefore, if C' is sufficiently large,

then P(X =0) < ¢, so Item 2 is also satisfied. In conclusion, py is truly a threshold.

Problem 2. What is a threshold probability function p = p(n) for the occurrence of the
graph below as a subgraph of the random graph G(n,p)?

Solution. Let X be the number of copies of the graph H (depicted above). We first



calculate the expectation of X.

n

E[X] = n(n — 1) <3

)p7 )

—5/7

Seeing this, one might be tempted to guess that py = n is a threshold function for the

appearance of H. However, let Y denote the number of copies of Ky. Then E[Y] = (%)p°.
It follows that the probability that G(n,p) contains a Ky is o(1) if p = o(n™%?). As K, is
a subgraph of H, this implies that the probability that G(n,p) contains a copy of H is o(1)
whenever p = o(n~2/3), contrary to the guess that if p = w(py) then G(n, p) contains a copy
of H w.h.p. (= with high probability, i.e. with probability 1 —o(1)). We shall see that n=2/3

is a threshold function for the property of containing a copy of H.
Let us calculate the variance of X. For that, list all copies of H in K,, as Hy,..., H;, and

let X; be the indicator function of the event that H, is in G. Then X = Zze ]

Var[X] = > Cov(X;, X;) = Y (E[X;X;] - E[X,JE[X;])

i,j€ll] i,5€l]
_Z P[H; U H; C G] — P[H; C G]-P[H; C G))
z]G

_Z 14—|E(H;)NE(H;)| _ p14)

zje
7
— p14 . Z Z (pik — 1)
k=0 ijell]:|E(H:)NE(H;)|=k
7
< pH Z Z p*

k=1 ijell): |E(H,)NE(H,)|=k
7
=p"- > p " #{(0,4) : |E(H) N E(H;)| =k},
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where the inequality follows as the pairs (i,j) for which £ = 0 contribute 0 to the sum,
and for the rest we use the inequality p~* — 1 < p~*. Now, we wish to bound #{(4,j) :
|E(H;)NE(H,)| = k}. Firstly, we note the following upper bounds on the number of vertices
that are in either H; or H;, provided |E(H;) N E(H;)| = k.

E=1

ke {2,3}
ke {4,5,6}
k=17

[V (H) UV (H,)| <

O N



It follows that
n® k=1
n’ ke {23}
,J) : |E(H;) N E(Hj)| = k} < |
HEDABH)OEHN =R <906 oy s
n

5 1 —
We obtain the following upper bound on Var[X].

Var[X] < pt* (n®p~! + 2np~% 4 30576 + n®p")
Let p = w(n™*?). Now

Var[X]

<O
E[X]? —
<o (n_2n2/3 +2n7%n% 4+ 3n" 0t + n_5n14/3) =o(1).

PIX = 0] <

n10p14

(Note that the largest term corresponds to H; and H; intersecting in a K, which hints to
the fact that K,’s are important.) So we have shown that if p = o(n~=?/?) then w.h.p. G(n, p)
does not contain a copy of H, and if p = w(n=2/3) then w.h.p. G(n,p) does contain a copy
of H. This shows that n~=2/3 is a threshold function for the property of containing a copy of
H.

Remark. We could have taken a simpler approach as follows. Instead of showing directly
that a copy of H exists w.h.p. when p = w(n~?/3), we could have shown that G'(n, p) contains
a copy of K, w.h.p. (this would involve the calculation of expectation and variance of the
number of copies of K, and is similar to, but probably easier than, the above), and moreover
we could have shown that w.h.p. every vertex has degree at least 4 (this can be done by
upper-bounding the probability that a vertex has too small degree and using a union bound).
Finally, we notice that if a graph contains a K, and every vertex has degree at least 4, then

the graph contains a copy of H.

Problem 3. Forn > 2 and p € (0,1) consider the random 5-partite graph G(n, p,5) defined
as follows. The vertex set of G(n,p,5) is a union of five disjoint independent sets Vi, ..., Vs,
each of size n. Moreover, for 1 < i < j <5, each (v;,v;) € V; x V} is an edge in G(n,p,5)
independently with probability p. Find a threshold probability function p = p(n) for the
occurence of K5 as a subgraph of G(n,p,5).

Solution. A valid threshold probability is p = n=1/2.

(a) Let X be the random variable counting the number of copies of K5 in G(n,p,5). Note



that E[X] = n5p® since there are n® potential copies of K5 and each of them occurs
with probability p® Therefore, if p = o(n~'/2) then

E[X] = n5p<2) =0 (n5n_§ (2)) =o(n’n"") = o(1)
and so, by Markov’s inequality
P[G(n,p,5) contains a copy of K,.] =P[X > 1] <E[X] = o(1).
By the second moment method we know that:

P(G(n,p,5) contains a copy of K5) =P(X >1)=1-PX =0 >1—

Therefore, it suffices to show that };T%g] =o(1). Let

S ={S C Ui Vi : [SN V| =1 for each i € [5]}.

For each S € § let Xg be the indicator random variable for the event Ag that S spans
a K5 in G(n,p,5). Clearly X =} o s Xg. Therefore:

Var[X] = ) Cov(Xg, Xr).
S, TreS

If |[SNT| < 1 then the events Ag and Ay are independent (because no edges are shared)
in which case Cov(Xg, X7) = 0. Hence:

Var[X] < ) Cov(Xs,X7) < > E[XgXy].

S, TeS S, TeS
2<|SNT|<5 2<|SNT|<5

Note that if [S N T| =i then E[XsX7| = p2(3)_(;> = p20_(5>. Therefore:

Y ElXsXq] < zi; (i)n‘r’(n 172 () < (np" 225:( ) )

S TeS =2
2<|SNT|<5

since there are n® ways to choose S € S, (f) ways to choose i parts on which S and T’

coincide and given these there are (n — 1)°~% ways to choose the vertices in T\ S. So

Var[X] < (n°p'*)? - O(n2pt + np 3 4+ n~tp 4+ n~0p710).



Since E[X] = n°p'®, we have

Var(X)
E[X]?

P(X =0) < <O 2p 4 n B P4t 4 nTp 0,

which is o(1) for p = w(n=/2).

Problem 4. Show there is a positive constant ¢ such that the following holds. For any n
reals ay,...,a, satisfying >0 a? = 1, if (e1,...,¢€,) is a {—1, 1}-random vector obtained
by choosing each ¢; randomly and independently with equal probability to be either —1 or
1, then

Pr [‘ i g;a;
=1

Solution. Without loss of generality, assume that |a1| > |as| > -+ > |a,|. Let X =

Sl] > c.

S, gia;. We will make use of the following fact for random variables defined similarly as

X. To illustrate, we work with X. For any value z # 0, we have
PriX <0||X|=z]=Pr[X >0||X|=2] =1/2.

Indeed, consider a sequence (g1, .. .,&,) such that | X| = x and X < 0. Then, for the negated
sequence (—eq, ..., —¢&,) we have | X| =z and X > 0. Hence, we obtain a bijection between
sequences of €’s for which |X| = z and X < 0 and those for which |X| = x and X > 0,

implying the claim.

By the law of total probability, we then have
Pr[X <0]]X|<1] <1/2.

The reason we do not necessarily have equality is that because it could be that | X| = 0.

Now, we proceed to the solution of the problem. We consider two cases:

o |ai| > %.
Let Z =" ,&;a;. Since the random variables (g,a;),7 € [n] are independent, we have
Var(Z) = Y1, Var(eia;) = Y 1, a? =1 —af <99/100. As E[Z] = 0, by Chebyshev’s
inequality Pr[|Z] < 1] > 1—VarZ > 1/100. As ¢, and Z are independent, by the above

discussion, we have
Pre;-Z<0]]|Z] <1] > 1/2.

Note that if |Z| <1 and &1 - Z < 0, then |X| < max{|Z| — |a1], |a1]|} < 1. We conclude



that
Pr[|X| <1] > Pr[|Z]| <1]-Prle; - Z <0]|Z] < 1] > 1/200.

° |CL1| < %

Let k be such that 2% a2 > 1/2 and Y. 'a? < 1/2. We denote Y = SF_ .q,

and Z = 37", . €;a;. Similarly as before, we have Var(Y) = S a2 <1/24 a2 <

(2

1/2 +1/100 and Var(Z) = 31" . a7 < 1/2. By the argument above, using that Y’

)

and Z are independent, we have

Pr[Y-Z<0||Y||Z] <1] >1/2.

Therefore, we have
PriX|<1]>Pr[[Y|<1A|Z|<1AY -Z <]
= Pr|Y[ <1]-Pr[|Z] <1] - Pr[Y - Z < O[[Y], | 2] < 1]

> (1 — VarY)(1 — VarZ) - = > 1/10.

N —

Hence, we may take ¢ = 1,/200.



