
Probabilistic Methods in Combinatorics

Instructor: Oliver Janzer

Solutions to Assignment 7

Problem 1. Show that p0 = n−1 is a weak threshold for the property that G(n, p) contains

K3 (i.e. a triangle) as a subgraph.

Solution. We follow the same method as for K4 in the course. Let X be the number of

K3’s in G(n, p), and for a given 3-element set S of vertices, let XS be the indicator random

variable of the event that S spans a clique; namely, XS = 1 if S spans a clique, and XS = 0

otherwise. Then X =
∑

S XS, where the sum ranges through all 3-element subsets of the

vertex set. Clearly, we have E(XS) = p3, and so E(X) =
(
n
3

)
p3. Note that G(n, p) contains

a K3 if and only if X ≥ 1.

We verify that Items 1 and 2 in the definition of a (weak) threshold are satisfied. First, we

show that Item 1 holds, so let p < p0
C

with some constant C. By Markov’s inequality, we

have

f(p) = P(X ≥ 1) ≤ E(X) =

(
n

3

)
p3 < n3p3 < n3(p0/C)3 = C−3.

Therefore, by choosing C sufficiently large, we have f(p) < ε, satisfying Item 1.

Now let p > Cp0 = Cn−2/3. We can write f(p) = 1 − P(X = 0). Now by Chebyshev, we

bound the probability P(X = 0) as follows:

P(X = 0) ≤ Var(X)

(E(X))2
.

Now our task is to calculate Var(X). We have

Var(X) =
∑
S,T

Cov(XS, XT ). (1)

(Here, the sum is over all ordered pairs (S, T ), including S = T .)

Now let us compute Cov(XS, XT ). Note that

Cov(XS, XT ) = E[XSXT ]− E[XS]E[XT ] = P(AS ∩ AT )− P(AS)P(AT ),

where AS is the event that S spans a clique. Since P(AS) = p3 for every set S of size 3,

we have P(AS)P(AT ) = p6 for all S, T . However, the term P(AS ∩ AT ) depends on the size
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of S ∩ T . Indeed, P(AS ∩ AT ) = pg(S,T ), where g(S, T ) is the number of pairs of vertices

contained entirely in S or entirely in T (since we need all these pairs to be edges in our

random graph for the event AS ∩ AT to hold). Note that

g(S, T ) =


3 if S = T

5 if |S ∩ T | = 2

6 otherwise

and therefore

Cov(XS, XT ) =


p3 − p6 if S = T

p5 − p6 if |S ∩ T | = 2

0 otherwise.

Also, for k ∈ {0, 1, 2, 3}, the number of pairs (S, T ) such that |S ∩ T | = k is less than n6−k

as S ∪ T occupies 6 − k vertices. Therefore, the contribution of pairs (S, T ) with S = T

is at most n3p3, the contribution of pairs (S, T ) with |S ∩ T | = 2 is at most n4p5, and the

contribution of the other pairs is 0. Hence,

Var(X) < n3p3 + n4p5.

Also, E(X) =
(
n
3

)
p3 = Ω(n3p3). So we get

P (X = 0) ≤ Var(X)

(E(X))2
<

n3p3 + n4p5

Ω(n6p6)
= O(n−3p−3 + n−2p−1)

= O(C−3 + C−1n−1),

where for the last inequality we used that p > Cn−1. Therefore, if C is sufficiently large,

then P (X = 0) ≤ ε, so Item 2 is also satisfied. In conclusion, p0 is truly a threshold.

Problem 2. What is a threshold probability function p = p(n) for the occurrence of the

graph below as a subgraph of the random graph G(n, p)?

Solution. Let X be the number of copies of the graph H (depicted above). We first
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calculate the expectation of X.

E[X] = n(n− 1)

(
n

3

)
p7 = Θ(n5p7).

Seeing this, one might be tempted to guess that p0 = n−5/7 is a threshold function for the

appearance of H. However, let Y denote the number of copies of K4. Then E[Y ] =
(
n
4

)
p6.

It follows that the probability that G(n, p) contains a K4 is o(1) if p = o(n−2/3). As K4 is

a subgraph of H, this implies that the probability that G(n, p) contains a copy of H is o(1)

whenever p = o(n−2/3), contrary to the guess that if p = ω(p0) then G(n, p) contains a copy

of H w.h.p. (= with high probability, i.e. with probability 1− o(1)). We shall see that n−2/3

is a threshold function for the property of containing a copy of H.

Let us calculate the variance of X. For that, list all copies of H in Kn as H1, . . . , Hl, and

let Xi be the indicator function of the event that Hi is in G. Then X =
∑

i∈[l] Xi.

Var[X] =
∑
i,j∈[l]

Cov(Xi, Xj) =
∑
i,j∈[l]

(E[XiXj]− E[Xi]E[Xj])

=
∑
i,j∈[l]

(P[Hi ∪Hj ⊆ G]− P[Hi ⊆ G] · P[Hj ⊆ G])

=
∑
i,j∈[l]

(
p14−|E(Hi)∩E(Hj)| − p14

)
= p14 ·

7∑
k=0

∑
i,j∈[l]: |E(Hi)∩E(Hj)|=k

(
p−k − 1

)
≤ p14 ·

7∑
k=1

∑
i,j∈[l]: |E(Hi)∩E(Hj)|=k

p−k

= p14 ·
7∑

k=1

p−k ·#{(i, j) : |E(Hi) ∩ E(Hj)| = k},

where the inequality follows as the pairs (i, j) for which k = 0 contribute 0 to the sum,

and for the rest we use the inequality p−k − 1 ≤ p−k. Now, we wish to bound #{(i, j) :

|E(Hi)∩E(Hj)| = k}. Firstly, we note the following upper bounds on the number of vertices

that are in either Hi or Hj, provided |E(Hi) ∩ E(Hj)| = k.

|V (Hi) ∪ V (Hj)| ≤


8 k = 1

7 k ∈ {2, 3}
6 k ∈ {4, 5, 6}
5 k = 7
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It follows that

#{(i, j) : |E(Hi) ∩ E(Hj)| = k} ≤


n8 k = 1

n7 k ∈ {2, 3}
n6 k ∈ {4, 5, 6}
n5 k = 7

We obtain the following upper bound on Var[X].

Var[X] ≤ p14
(
n8p−1 + 2n7p−3 + 3n6p−6 + n5p−7

)
Let p = w(n−2/3). Now

P[X = 0] ≤ Var[X]

E[X]2
≤ O

(
p14 (n8p−1 + 2n7p−3 + 3n6p−6 + n5p−7)

n10p14

)
≤ o

(
n−2n2/3 + 2n−3n2 + 3n−4n4 + n−5n14/3

)
= o(1).

(Note that the largest term corresponds to Hi and Hj intersecting in a K4, which hints to

the fact that K4’s are important.) So we have shown that if p = o(n−2/3) then w.h.p. G(n, p)

does not contain a copy of H, and if p = w(n−2/3) then w.h.p. G(n, p) does contain a copy

of H. This shows that n−2/3 is a threshold function for the property of containing a copy of

H.

Remark. We could have taken a simpler approach as follows. Instead of showing directly

that a copy of H exists w.h.p. when p = ω(n−2/3), we could have shown that G(n, p) contains

a copy of K4 w.h.p. (this would involve the calculation of expectation and variance of the

number of copies of K4 and is similar to, but probably easier than, the above), and moreover

we could have shown that w.h.p. every vertex has degree at least 4 (this can be done by

upper-bounding the probability that a vertex has too small degree and using a union bound).

Finally, we notice that if a graph contains a K4 and every vertex has degree at least 4, then

the graph contains a copy of H.

Problem 3. For n ≥ 2 and p ∈ (0, 1) consider the random 5-partite graph G(n, p, 5) defined

as follows. The vertex set of G(n, p, 5) is a union of five disjoint independent sets V1, . . . , V5,

each of size n. Moreover, for 1 ≤ i < j ≤ 5, each (vi, vj) ∈ Vi × Vj is an edge in G(n, p, 5)

independently with probability p. Find a threshold probability function p = p(n) for the

occurence of K5 as a subgraph of G(n, p, 5).

Solution. A valid threshold probability is p = n−1/2.

(a) Let X be the random variable counting the number of copies of K5 in G(n, p, 5). Note
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that E[X] = n5p(
5
2) since there are n5 potential copies of K5 and each of them occurs

with probability p(
5
2). Therefore, if p = o(n−1/2) then

E[X] = n5p(
5
2) = o

(
n5n− 1

2
·(52)

)
= o(n5n−5) = o(1)

and so, by Markov’s inequality

P [G(n, p, 5) contains a copy of Kr] = P[X ≥ 1] ≤ E[X] = o(1).

(b) By the second moment method we know that:

P(G(n, p, 5) contains a copy of K5) = P(X ≥ 1) = 1− P[X = 0] ≥ 1− Var[X]

E[X]2
.

Therefore, it suffices to show that Var[X]
E[X]2

= o(1). Let

S = {S ⊆ ∪i∈[5]Vi : |S ∩ Vi| = 1 for each i ∈ [5]}.

For each S ∈ S let XS be the indicator random variable for the event AS that S spans

a K5 in G(n, p, 5). Clearly X =
∑

S∈S XS. Therefore:

Var[X] =
∑
S,T∈S

Cov(XS, XT ).

If |S∩T | ≤ 1 then the events AS and AT are independent (because no edges are shared)

in which case Cov(XS, XT ) = 0. Hence:

Var[X] ≤
∑
S,T∈S

2≤|S∩T |≤5

Cov(XS, XT ) ≤
∑
S,T∈S

2≤|S∩T |≤5

E[XSXT ].

Note that if |S ∩ T | = i then E[XSXT ] = p2(
5
2)−(

i
2) = p20−(

i
2). Therefore:

∑
S,T∈S

2≤|S∩T |≤5

E[XSXT ] ≤
5∑

i=2

(
5

i

)
n5(n− 1)5−ip20−(

i
2) ≤

(
n5p10

)2 5∑
i=2

(
5

i

)
n−ip−(

i
2)

since there are n5 ways to choose S ∈ S,
(
5
i

)
ways to choose i parts on which S and T

coincide and given these there are (n− 1)5−i ways to choose the vertices in T \ S. So

Var[X] ≤ (n5p10)2 ·O(n−2p−1 + n−3p−3 + n−4p−6 + n−5p−10).
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Since E[X] = n5p10, we have

P(X = 0) ≤ Var(X)

E[X]2
≤ O(n−2p−1 + n−3p−3 + n−4p−6 + n−5p−10),

which is o(1) for p = ω(n−1/2).

Problem 4. Show there is a positive constant c such that the following holds. For any n

reals a1, . . . , an satisfying
∑n

i=1 a
2
i = 1, if (ε1, . . . , εn) is a {−1, 1}-random vector obtained

by choosing each εi randomly and independently with equal probability to be either −1 or

1, then

Pr

[∣∣∣ n∑
i=1

εiai

∣∣∣ ≤ 1

]
≥ c.

Solution. Without loss of generality, assume that |a1| ≥ |a2| ≥ · · · ≥ |an|. Let X =∑n
i=1 εiai. We will make use of the following fact for random variables defined similarly as

X. To illustrate, we work with X. For any value x ̸= 0, we have

Pr[X < 0 | |X| = x] = Pr[X > 0 | |X| = x] = 1/2.

Indeed, consider a sequence (ε1, . . . , εn) such that |X| = x and X < 0. Then, for the negated

sequence (−ε1, . . . ,−εn) we have |X| = x and X > 0. Hence, we obtain a bijection between

sequences of ε’s for which |X| = x and X < 0 and those for which |X| = x and X > 0,

implying the claim.

By the law of total probability, we then have

Pr
[
X < 0 | |X| ≤ 1

]
≤ 1/2.

The reason we do not necessarily have equality is that because it could be that |X| = 0.

Now, we proceed to the solution of the problem. We consider two cases:

• |a1| ≥ 1
10
.

Let Z =
∑n

i=2 εiai. Since the random variables (εiai), i ∈ [n] are independent, we have

Var(Z) =
∑n

i=2 Var(εiai) =
∑n

i=2 a
2
i = 1− a21 ≤ 99/100. As E[Z] = 0, by Chebyshev’s

inequality Pr[|Z| ≤ 1] ≥ 1−VarZ ≥ 1/100. As ε1 and Z are independent, by the above

discussion, we have

Pr
[
ε1 · Z ≤ 0 | |Z| ≤ 1

]
≥ 1/2.

Note that if |Z| ≤ 1 and ε1 ·Z ≤ 0, then |X| ≤ max{|Z| − |a1|, |a1|} ≤ 1. We conclude
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that

Pr[|X| ≤ 1] ≥ Pr[|Z| ≤ 1] · Pr[ε1 · Z ≤ 0 | |Z| ≤ 1] ≥ 1/200.

• |a1| < 1
10
.

Let k be such that
∑k

i=1 a
2
i ≥ 1/2 and

∑k−1
i=1 a

2
i < 1/2. We denote Y =

∑k
i=1 εiai

and Z =
∑n

i=k+1 εiai. Similarly as before, we have Var(Y ) =
∑k

i=1 a
2
i ≤ 1/2 + a2k ≤

1/2 + 1/100 and Var(Z) =
∑n

i=k+1 a
2
i ≤ 1/2. By the argument above, using that Y

and Z are independent, we have

Pr
[
Y · Z ≤ 0

∣∣ |Y |, |Z| ≤ 1
]
≥ 1/2.

Therefore, we have

Pr[|X| ≤ 1] ≥ Pr[|Y | ≤ 1 ∧ |Z| ≤ 1 ∧ Y · Z ≤ 0]

= Pr[|Y | ≤ 1] · Pr[|Z| ≤ 1] · Pr[Y · Z ≤ 0 | |Y |, |Z| ≤ 1]

≥ (1− VarY )(1− VarZ) · 1
2
≥ 1/10.

Hence, we may take c = 1/200.
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